
N89 - 1 5 5 9 3

KNOWLEDGE REPRESENTATION ISSUES FOR EXPLAINING PLANS
Mary Ellen Prince
James D. Johannes

University of Alabama in Huntsville
Computer Science Department

Huntsville, AL 35899

ABSTRACT

Explanations are recognized as an important facet of intelli-
gent behavior. Unfortunately, expert systems are currently limited
in their ability to provide useful, intelligent justifications of
their results. We are currently investigating the issues involved
in providing explanation facilities for expert planning systems.
This investigation addresses three issues: knowledge content,
knowledge representation, and explanation structure.

Introduction

An important characteristic of an intelligent system, whether
human or computer, is the ability to explain or justify its-actions.
Recognizing this fact, expert system developers were the first to
regularly incorporate explanation facilities into their programs.
t31. Unfortunately, early attempts at automated explanation pro-
duced results that were significantly different from human explana-
tions, both in organization and in information content.

In large measure this was due to the methods which were used
to model expert problem solving knowledge. Production rules, the
m o s t popular f o r m o f knowledge representation, proved to be an
effective representation for generating solutions, but were less
than satisfactory for generating explanations of those solutions.
The domain principles and expertise which determined the organi-
zation and content of the rule base were represented implicitly,
i f at all, and therefore could not be used to justify the system's
behavior.

Recent research has focussed on methods of improving the ex-
planation capability of intelligent systems. ((4 1 , 161 , (9 1 , 1101,
[ill). A t least three issues must be considered: first, identi-
fication of the kinds of knowledge which constitute a useful expla-
nation; second, determination of a representation formalism to make
the knowledge readily accessible to the explanation generator; and
third, methods for selecting and organizing the knowledge in order
to present it in a meaningful format.

This paper will address the first i s sue in depth and will sug-
gest an approach to the second. For a discussion of explanation
organization, see [2 1 . The explanation domain will be planning
systems.

331

The Importance of Explanations

There is a significant gap between what users would like to
see in an explanation system and what is feasible in light of
current theory and technology. Although researchers are working
to close the gap, much remains to be done.

A system that is able to explain its own behavior has several
advantages over systems that lack this ability. For example,
adequate explanation facilities can reassure skeptics that the
system's reasoning processes are sound and its results are reliable.
They can also serve a tutorial purpose. A properly constructed
description of the strategy and domain principles used to derive a
solution can provide insight which the user can then apply to
other, similar, problems. The novice is thus encouraged to expand
his knowledge of the domain, much as i f he were working directly
with a human expert. Explanations can be useful to knowledge
engineers during the test and debug phase of system development,
just as program traces are useful to a programmer under similar
conditions ([ll, [6 1) . In addition, good explanations can provide
an automatic documenting capability. Finally, it can be argued
that a system which contains the knowledge needed to produce good
explanations can also be designed to use this information to
improve its own performance in areas such as error recovery.

Current State of Explanation Technology

Explanation technology is severely limited in its ability to
provide the benefits cited above. Explanations typically assume
one of two forms: natural language traces of the rules currently
under consideration or, less frequently, "canned text" inserted by
the designer.

Rule traces have some advantages. They provide an accurate
record of the program's activity and are thus helpful for
debugging the knowledge base and for showing when the program is
being pushed beyond the limits of its ability. In addition,
modifications to the rules are automatically reflected in the
associated explanations, thereby insuring consistency.
Explanations produced by paraphrasing rules suffer, however, from
several defects. They are poorly structured, and often filled
with low level operational details that are of little interest
to the average user. More seriously, they are in general incapable
of explaining causal relations, the rationale behind a solution,
strategic issues, or anything about fundamental domain principles.
The reason for this is that the knowledge required for deep
explanations is not explicitly represented in the rules. Problem
solving strategy and domain relations are implicit in the clause
ordering of rule concepts, and the principles which justify the
rules and strategy are missing altogether.

Canned text explanations can be used to annotate individual
rules or groups of rules, but this approach lacks the flexibility

332

which is needed for a full scale explanation system. It is diffi-
cult to anticipate every explanation which may be required. In
addition, there is no guarantee that changes to the program code
will be reflected in changes to the associated explanations, since
there is no automatic connection between the two.

In summary, it is apparent that the current state of explana-
tion technology falls far short of that which may be desired. The
following sections will examine the kinds of questions that a good
explanation system might reasonably be expected to address, and
identify the knowledge needed to respond to these questions. For
background, a discussion of the planning domain will be presented.

The Planning Domain

This paper addresses explanation generation in the context
of expert planning systems. Previous explanation research has
concentrated on diagnostic expert systems, primarily in the
areas of medicine and electronic trouble shooting. An important
consideration is whether these findings can be extended to other
domains, such as planning. A comparison between planning systems
and diagnostic systems will help to answer this question.

Simply stated, an expert planner is a system that generates
a sequence of steps which, when applied from a given starting
state, will produce the desired goal state. Some systems are
interactive, so that feedback during plan execution can influence
future planning decisions. In traditional planners, often called
strategic planners, it is more commonly the case that plan
generation and plan execution are two distinct processes. Robot
problem solvers and automatic programming are two common
application domains for planning systems.

The individual steps in a plan are produced by plan operators,
which describe the legal actions or events that can occur in the
application domain. Operators are typically described by a set of
preconditions, which determine when an operator can legally be
applied, and a set of postconditions, which describe the operator's
effect on the world state. Operator descriptions may also include
additional information such as procedures for accomplishing de-
sired effects, ordering constraints, and resource requirements.

The planning process consists of choosing appropriate opera-
tors and ordering them to achieve the goals which constitute the
final state. Early planners were linear; that is, they developed
a sequence of steps to achieve each individual goal in order. At
every point in the planning process the plan was fully detailed,
but complete only to that point. STRIPS (7 1 is the most familiar
example of a linear planner.

Hierarchical planners, on the other hand, start with a high
level representation of the entire plan and refine it through

3 3 3

several levels of abstraction to arrive at the final sequence of
primitive operators. A feature frequently associated with
hierarchical planners is partial ordering of actions. Non-
hierarchical planners are often forced to make arbitrary ordering
decisions in order to maintain the linear nature of the incomplete
plan. Hierarchical planners postpone committment until it is
clear that the committment will not have to be undone at some
later stage. NOAHl81, NONLIN[lZI, and SIPEl131 are hierarchical
planners.

A third paradigm is case-based or script-based planning.
This approach relies on a library of existing skeletal plans
which are adapted to new situations by various refinement and
"debugging" techniques. HACKER and MOLGENlSI are two examples of
planners that fit this paradigm.

Comparison of Planning Systems and Diagnostic Systems

Comparison of planning systems and diagnostic systems
suggests several parallels that can be exploited to transfer
explanation theory from the diagnostic domain to the planning
domain. Two that will be investigated here are the knowledge
bases and the inferencing processes.

The knowledge of a typical diagnostic system is encoded in
production rules, a simple, flexible formalism for representing
expert reasoning. Rules consist of two parts: the premise,
typically a conjunction of clauses, and the conclusion, or goal.
The conclusion can be established by proving that the clauses
in the premise are true. This may be done by gathering evidence
directly or by proving other rules which have the same clauses
as goals. Thus the knowledge base can be viewed as a hierarchi-
cal network with implicit links between goals and premises.

The operators in a planning system serve a function analagous
to that of production rules in the sense that they contain the
necessary problem solving knowledge. The analogy can be extended
to structural aspects of the knowledge as well. An operator's
preconditions (premises) must be satisfied in order to achieve
the desired postconditions (goal). Satisfying preconditions can
be accomplished by applying other operators with the appropriate
postconditions, thus giving the set of defined operators a net-
work structure.

Inference in expert systems is accomplished by rule chaining.
Depending on its design, a system may chain backward from a sus-
pected diagnosis to known evidence, or it may chain forward from
the evidence to a diagnosis.

Planners, particularly those based on the hierarchical para-
digm, may use problem reduction as an inference technique. The
method is to first express a plan as a sequence of high level goals
and then to refine each abstract goal into a set of more concrete
subgoals. The refinement process can be repeated as often as is

3 3 4

necessary to produce the final sequence of primitive actions. As
an alternate, a planner might employ means-ends analysis. This
approach involves a comparison between the current state and the
goal state. Wherever differences are detected, operators are
selected to reduce the differences. This is also an iterative
process.

Plan derivation and diagnosis differ in the details of how
the appropriate operators or rules are selected but the effect
of the selection process is similar in both cases. At any point
during the inferencing process there exists a stack of goals,
implicit or explicit, which must be realized. An achieved solution
represents a path through the network of rules or operators. For
planning systems the path is equivalent to the plan; for diagnostic
systems it represents the chain of reasoning that led to a specific
diagnosis.

The solution produced by a planning system is more complex
than the solution produced by a diagnostic system. A plan is a
structured entity consisting of an ordered sequence of steps, while
a diagnosis consists of a single entity. In addition, many planners
operate in dynamic, multi-agent domains. They must plan simulta-
eous actions, prevent harmful interactions between competing agents,
and consider the effects of actions over which they have no direct
control. It is reasonable to expect that this added complexity will
cause a corresponding increase in the complexity of the associated
explanation. The next section will expand on this premise through
a discussion of the epistemological issues of explanation theory as
applied to expert planners. It will first outline some of the
issues that must be addressed by an explanation system and will
then present a taxonomy of explanation related knowledge.

The Epistemology of Explanations

A good explanation facility should be flexible enough to meet
the needs of domain experts, novice users, and system designers.
The following items illustrate the kinds of questions that it might
be expected to address.

Domain Facts, Principles, and Terminology
Terminology is important as a foundation for understanding
higher level explanations. Principles describe the problem
solving procedures which can be used to achieve a goal. In
well defined domains most facts can be expressed as causal
relations, while in less formalized domains, empirical
associations and heuristics play an important role.
Comparisons and Choices
Explaining why one action is preferable to another is a
difficult task. Such decisions may be predicated on an
accumulation of prior evidence, or on anticipation of future
effects. In general, this kind of explanation requires a
knowledge of constraints, interactions between events, and
ultimate goals.

335

- Justification
Justifying a single step in a plan can be as simple at stating
a causal relationship or as complicated as explaining a choice.
Justifying an entire plan may require the system to identify
strategies, constraints, priorities, resource restrictions, and
temporal issues.

Questions about methodology refer to the mechanics by which a
particular solution was obtained.

- General Strategy
In addition to specific methods, most problem solvers also rely
on abstract principles and weak methods to guide the problem
solving process.

- Methodology

No system has yet been able to respond to all of these issues.
Expert systems have traditionally answered questions about
methodology by paraphrasing a chain of executed rules. In
planning systems, a similar effect can be achieved by showing how
operators in a general procedure have been instantiated with case-
specific data. MYCINI31 had a limited ability to compare
alternative drug therapies. In NEOMYCIN Clanceyi'll and Haslinq
et a1 I61 extended the explanatory capabilities of MYCIN by
incorporating meta-rules to provide information about strategy.
Shulman and Hayes-Roth(91 designed an explanation module to provide
justifications and feasibility evaluations for certain knowledge
systems where the reasoning was controlled by a strategic plan. In
general, however, most systems lack the deep knowledge required to
provide a broad range of explanations.

The remainder of this section identifies the kinds of know-
ledge needed for plan explanation. This identification is based on
previous explanation research from the diagnostic domain, as well
as on the specific needs of the planning domain. For purposes of
discussion, the knowledge will be classified as either meta-
knowledge (knowledge about knowledge), domain knowledge, or case-
specific knowledge.

- Meta-Knowledge

Meta-knowledge embodies knowledge about control strategy and
problem solving techniques.
might be classified as domain knowledge, the guidelines used to
choose between competing strategies fall into the category of
meta-knowledge. Many of the so-called "weak methods" can also be
categorized this way. Examples of meta-knowledge are "Look for
common causes for a device malfunction before looking for unusual
causesf1 or "Avoid ordering plan operators until there is a reason
to do so.tg

While a specific method or strategy

It is not clear that there are principles which are applicable
to every planning domain. For example, a linear planner might
employ the principle "Order plan operators arbitrarily if no

336

information exists; modify later if necessary" instead of the
"avoid ordering" principle cited earlier. It is clear, however,
that every planning system operates on a set of general strategic
principles which may, in fact, have wide application.

Some illustrations of these general strategies may be found
in the literature. Swartout[lOl, for example, recommends the use
of tttradeof fs" and I@preferences@', where tradeoffs indicate the pros
and cons of selecting a particular goal-achieving strategy and
preferences are used to prioritize goals. Planners in multi-agent
domains that permit parallel actions have devised methods for re-
solving the conflicts that arise when actions in one branch of a
plan interfere with actions in another branch[l31. System designers
must identify the abstract principles that guide their own problem
solving and incorporate them into the meta-level knowledge structure.
In order to provide good explanations of general strategy and to
justify final plans it is important that the information be
represented explicitly.

- Domain Knowledge

Without domain knowledge, it is impossible to explain termi-
nology, principles, and domain facts. It is also difficult to fur-
nish justifications and explanations of general principles unless
domain specific information is available. Both declarative and
procedural knowledge are required here. Declarative knowledge
encompasses terminology and factual information, while procedural
knowledge expresses how goals can be accomplished. Swartout and
Smoliar 1111 discuss the need for terminological, domain descrip-
tive, and problem solving knowledge in the context of EES, an
expert system which diagnoses cardiac difficulties and prescribes
digitalis therapy. Their structure is sufficiently general to
apply to planning as well as diagnostic domains.

The terminology of a planning system includes all domain
concepts. Physical objects, their properties, and relations among
objects such as t*on-top-oftl or *Igreater-thant1 must be defined in
terms of system primitives. Factual knowledge can be represented
as assertions of causal relations or probabilistic associations.
Certain types of constraints which control the temporal ordering
of operators and specify harmful or helpful interactions may also
be represented this way.

Procedural or strategic knowledge in intelligent planners
involves the selection and ordering of plan operators. The appli-
cation of domain strategies is subject to control by meta-level
knowledge and is, at the same time, dependent on case-specific
information that can activate constraints and ordering rules. To
be fully explainable, strategies must also be supported by a
rationale based on domain facts.

- Case-Specific Knowledge

Every instance of a planner's operation begins with a speci-

3 3 7

fication of the initial world state, the desired goal state, and
a list of constraints, availabe resources, and other pertinent
information. Using meta-level and domain strategies, the planner
then generates a sequence of steps which describe how to achieve
the goal. The final plan consists of these steps, instantiated to
satisfy the initial specifications.

While the plan itself may be used to explain methodology,
much as a traditional diagnostic system uses its rule chain to
explain its diagnosis, it is necessary to keep a case history of
the problem-solving process in order to provide deep explanations.
At a minimum, the case history must include the procedures used,
choices made, and the reasons for those choices.

As has been previously noted, some choices occur when the
planner is forced to decide among two or more operators. Other
decisions determine the ordering of plan steps. Diagnostic systems
use certainty factors or other numerical weights as an aid when
making similar decisions. Quantitative values do not contain
enough information to generate satisfactory explanations, however,
nor are they always appropriate in the planning domain. Planninq
decisions result from a combination of constraints, goal priorities,
resource availability, or the knowledge that one or more of the
options would interfere with the achievement of some future goal.
This is the type of knowledge that must be kept in the case history.

It should be clear from the preceding discussion that there
is no absolute boundary separating meta-knowledge, domain know-
ledge, and case-specific knowledge. Furthermore, there are
situations where it is necessary to integrate information from
more than one knowledge level to produce an adequate explanation.
The next section will investigate methods of structuring planning
knowledge to make it accessible to the explanation generator.

Representation Issues

The knowledge required to explain plans is, on the whole, the
same knowledge that is required to generate the plans. Previous
intelligent systems have made much of this knowledge unavailable
for explanation generation. The problem now is to develop repre-
sentation formalisms that will make the information explicit with-
out unduly affecting the efficiency of the plan generator. A
completely developed representation scheme is beyond the scope of
this paper. Instead, it will concentrate on outlining a general
knowledge structure to guide future research.

Domain terminology is best represented as a type hierarchy of
nodes. The highest levels of the hierarchy serve as an index to
domain concepts, while the lowest level can be instantiated with
case-specific data. Individual nodes have attributes which can be
either pointers to other nodes, definitions, or other properties.
The pointers define the hierarchy and permit property inheritance.
Attributes describe concept features and may be used to record
constraints on the values of plan variables.

338

Operators also have a natural hierarchical structure. Abstract
operators encode meta-level strategies which in turn invoke domain
procedures. A t the bottom of the hierarchy are the primitive opera-
tors which define individual plan steps. In addition to parameters,
pre-conditions, and post-conditions, operators should include
information about constraints, resources, and rationales. Con-
straints may apply to variable values or to temporal ordering.
Resource requirements describe the domain resources needed to per-
form the step and the duration for which the resources must be
available. The rationale may state that the operator is necessary
in order to establish some condition needed for a future action or
it may provide a causal justification for the process invoked.

The case history records the refinement process by which the
plan was generated, giving it, too, a hierarchical structure. The
highest levels contain information about meta-level decisions, such
as options between alternative strategies. Intermediate levels are
concerned with domain dependent choices. The lowest level corre-
sponds to the actual steps of the plan. Nodes in the history are
instantiated with case-specific data, where appropriate. Choice
nodes can be annotated with reasons that justify the choices- For
explanation purposes it is vital that the domain facts and defi-
nitions that motivated the choices be represented. The structure
will then contain all knowledge needed to justify the plan.

6. Conclusion

Explanation theory is just beginning to move beyond the narrow
scope of early efforts. Providing intelligent responses to a
variety of questions requires a full and explicit representation
of the knowledge involved. The hierarchical nature of knowledge
in an expert planning system enables the planning process to be
explained on many levels of abstraction. Systems which rely pri-
marily on the knowledge embedded in low-level rules forfeit this
opportunity. Building the knowledge bases required for adequate
explanations is no small task, It is an activity that requires
careful attention from domain experts and knowledge engineers
alike. The result of this effort, however, is a system that will
be more responsive to the needs of its users.

339

REFERENCES

1. Berry, D. C. and Broadbent, D. E. "Expert Systems and the
Man-Machine Interface", Expert Systems, vol. 4, no. 1,
Feb. 1987, 18-28.

2. Bridges, S. and Johannes, J. D. t*Explanation Production by
Expert Planners", Proceedings of Fourth Conference on
Artificial Intelligence for Space Applications, to be
published. 1988.

3. Buchanan, B. G. and Shortliffe, E. H. Rule Based Expert
Systems. Addison-Wesley, Reading, MA, 1984.

4. Clancey, W. J. "The Epistemology of a Rule-Based Expert
System - A Framework for Explanationt', Artificial Intelligence,
20, 1983, 215-251.

5. Cohen, P. and Feigenbaum, E. A. The Handbook of Artificlal
Intelligence, vol. 3. William Kaufman, Inc. Los Altos, CA,
1984.

6. Hasling, D. W., Clancey, V. J. and Rennels, G. "Strategic
Explanations for a Diagnostic Consultation System".
International Journal of Man-Machine Studies, 20, 1984, 3-19.

7. Nilsson, N. J. Principles of Artificial Intelligence.
Tioga Publishing Co., Palo Alto, CA, 1980.

8. Sacerdoti, E. D. A Structure for Plans and Behavior.
Elsevier North-Holland, Inc. New York, NY, 1977.

9. Schulman, R. and Hayes-Roth, B. ExAct: A Model for Explaining
Actions. Knowledge Systems Laboratory, Report No. KSL 87-8,
Stanford University, Stanford, CA, 1987.

10. Swartout, W. R. ttKnowledge Needed for Expert System
Explanation", Future Computing Systems, vol. 1, no. 2, 1986,
99-113.

11. Swartout, W. R. and Smoliar, S. W. "On Making Expert Systems
More L i k e Experts", Expert Systems, vol. 4, no. 3, Aug. 1987,
196-207.

12. Tate, A. "Generating Project Networks", Proceedings IJCAI 77,
1987, 888-893.

13. Wilkins, D. E. t'Domain-Independent Planning: Representation
and Plan Generationn, Artificial Intelligence, 22, 1984,
269-301.

3 4 0

